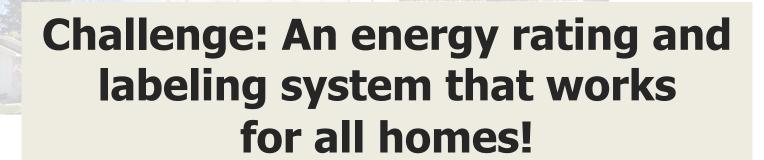


From Data to Action: Equitable Home Energy Labeling at Scale

Nov 19th, 2025


Mudit Saxena, CEO, XeroHome™ | MSaxena@xerohome.com

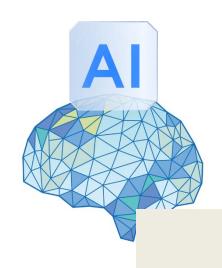
Acknowledgement

Analysis was funded by **Southern California Edison's Codes & Standards Program**, on request of the California Energy Commission. Analysis was led by XeroHome™ (Vistar Energy) with technical support from 2050 Partners.

Each home pays different utility rates Is in a different climate
Is built / used differently

14.2 Mil homes in CA9 Mil. single-family

If Only Some Homes Get Labeled ... We Risk Leaving Others Behind


Can Energy Usage Data Alone Be Used To Develop a Home Rating?

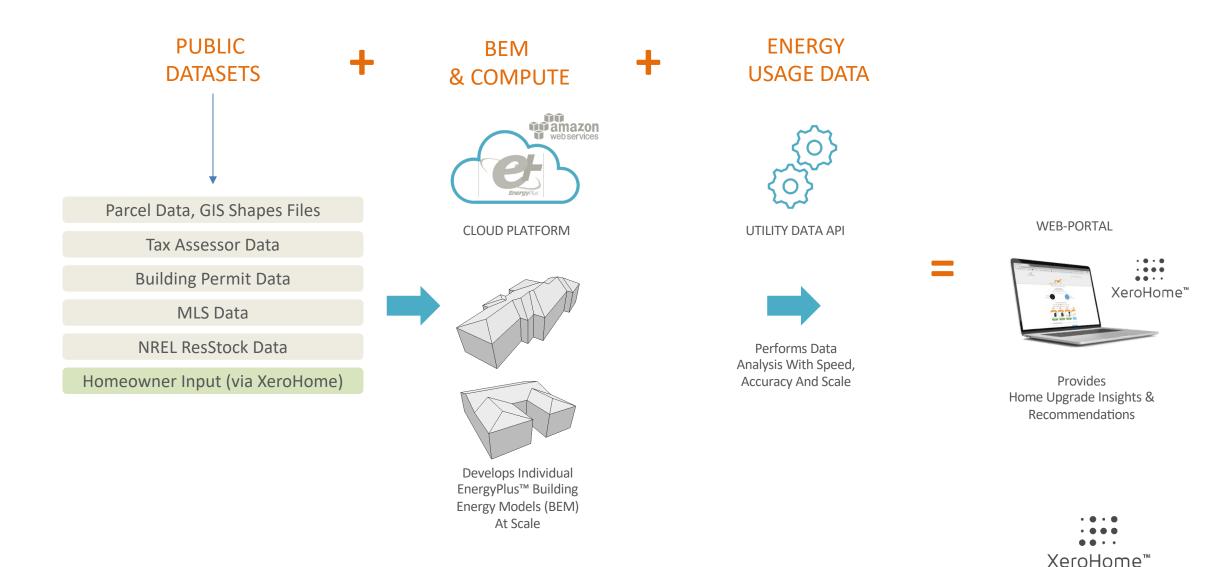
- Size Effect: Small inefficient homes, same usage as large efficient homes.
- **Behavior Bias**: Changes with occupants / occupant lifestyle.
- Weather Variability: Year-to-year weather shifts distort results.

What About Machine Learning? LLMs, Neural Networks, AI

AI can find patterns — Physics can explain the data

Physics-Based Model:

Understands how the home works


ML Model:

Usage Data In → Rating Out (No explanation)

- Black Box: Hard to explain why two homes get different ratings.
- Data Burden: Reliable ML needs tagged, standardized data at scale for millions of homes.
- Wissing Physics: Without a building model, AI can't predict upgrade impacts

A Scalable, Equitable Path: 'Building Energy Modeling (BEM) + Energy Usage Data'

Piloting 'BEM + Energy Usage Data' Approach XeroHome™ Deployments 2018 - 2025

Deployments funded by: Southern California Edison (SCE), Sacramento Municipal Utility District (SMUD), Pacific Gas & Electric (PG&E), Silicon Valley Clean Energy (SVCE), Association of Monterey Bay Govts. (AMBAG), City of Sacramento, New York State Energy & Research Development Auth. (NYSERDA), Ameren Missouri, National Grid New York, Alabama Power, Georgia Power, Electric Power Research Institute (EPRI)

Analysis of Data from XeroHome™ Deployments

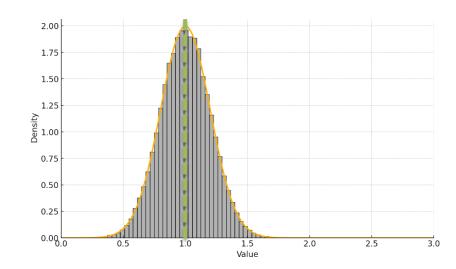
Analysis of XeroHome™ deployment data was done to demonstrate the feasibility of a 'no cost to participant' statewide home energy rating that is:

- **Teasible** to implement

Accurate in its results Today's presentation

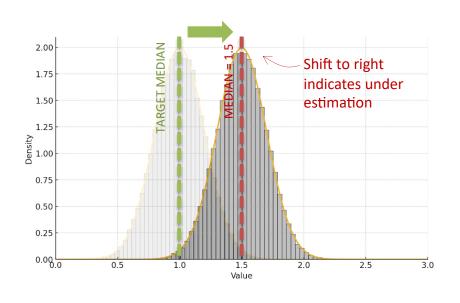
Scalable across millions of homes

Acknowledgement: Analysis was funded by Southern California Edison, led by XeroHome™ (Vistar Energy) with technical support from 2050 Partners.

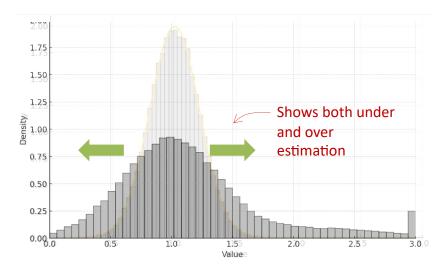


Visualizing Model Accuracy

 Modeled electric energy use compared to metered electric energy use for each home


$$Calibration \ Coefficient = \frac{Energy \ Use_{Actual}}{Energy \ Use_{Modeled}}$$

- <1 Calib. Coef. means actual energy use was **less** than modeled
- 1 Calib. Coef. means an exact match
- >1 Calib. Coef. means actual energy use was **more** than modeled

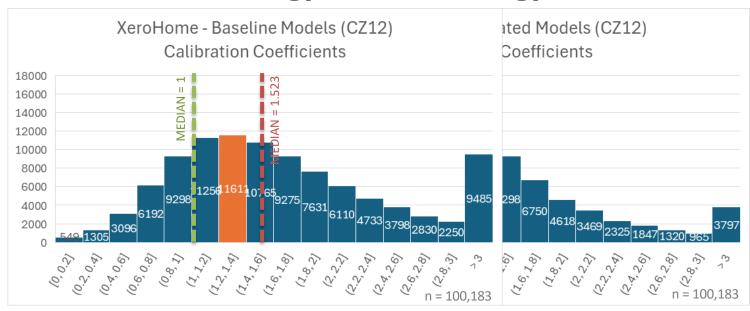


Bias and Uncertainty

 When most predictions cluster to one side of the true value, the models have a consistent bias systematically under or over estimation.

 When predictions spread widely around the true value, the models have high uncertainty - sometimes under, sometimes over estimation, but no consistent pattern.

Hypothesis #1 – Adding Energy Use Data Improves Accuracy of the Home Energy Models


- Quantify the improvement in **Bias** and reduction in **Uncertainty** when energy use data is used to calibrate the home energy models.
- Is there a difference between mild (coastal) vs extreme (inland) climates?

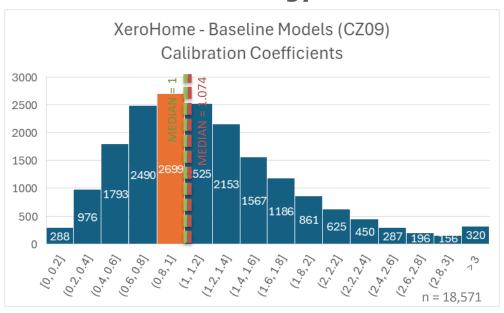
Model Accuracy: Without / With Energy Data Calibration Coefficients Histogram

Example 1 – CZ12 XeroHome[™] home energy models

Without Energy Data With Energy Data

1st Quartile	Median	3rd Quartitest	Quar tQ&	Me Stid rDev. 3	Brd Quartile	IQR	Std Dev.
1.086	1.523	2.129	1.043	1.049	1.567	0.778	0.793

• Bias: 78% reduction in systematic bias. Median moved closer to 1: from 1.523 \rightarrow 1.117



Model Accuracy: Without / With Energy Data Calibration Coefficients Histogram

Example 2 – CZ9 XeroHome[™] home energy models

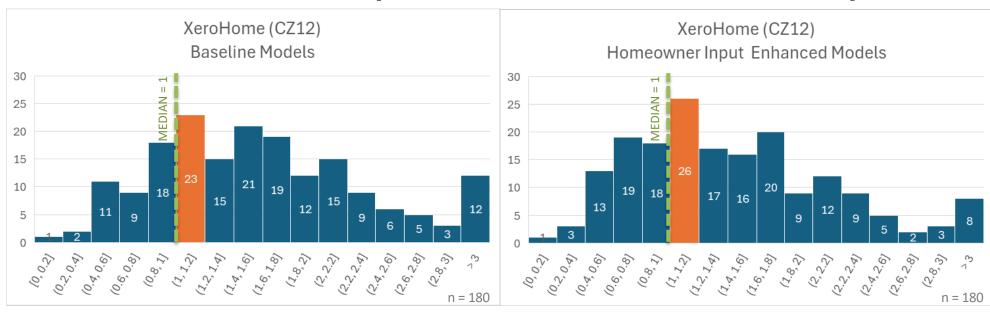
Without Energy Data

1st Quartile	Median	3rd Quartile	IQR	Std Dev.
0.734	1.074	1.521	0.787	0.734

• **Climate Zone 9** is a coastal (mild) climate and the home energy models showed high accuracy even without adding energy data.

Hypothesis #2 – Adding Inputs Collected by a Homeowner Improves Accuracy of the Home Energy Models

• Quantify the improvement in Bias and reduction in Uncertainty when data collected by a homeowner is used to improve the assumptions in the home energy models.



Model Accuracy: Without / With Homeowner Inputs Calibration Coefficients Histogram

Example 1 – CZ12 XeroHome™ Models built without and with access to homeowner data

Without Homeowner Input

With Homeowner Input

1st Quartile	Median	3rd Quartile	IQR	Std Dev.
1.048	1.510	2.066	1.018	0.983

1st Quartile	Median	3rd Quartile	IQR	Std Dev.
0.906	1.310	1.849	0.943	0.951

- Bias: 39% reduction in systematic bias. Median moved closer to 1: from $1.510 \rightarrow 1.310$
- Uncertainty: 3% reduction in uncertainty. Std Dev moved closer to 0: from 0.983 \rightarrow 0.951

Model Accuracy: Without / With Homeowner Inputs Calibration Coefficients Histogram

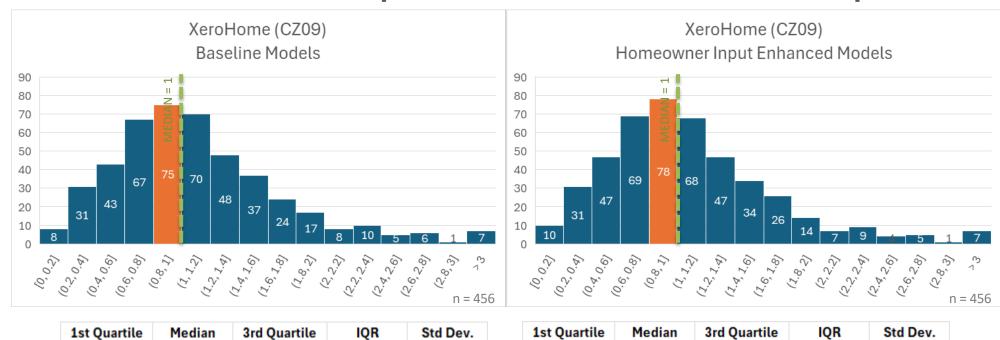
Example 2 – CZ9 XeroHome™ Models built without and with access to homeowner data

Without Homeowner Input

0.706

0.982

1.350


0.643

With Homeowner Input

1.407

0.690

0.643

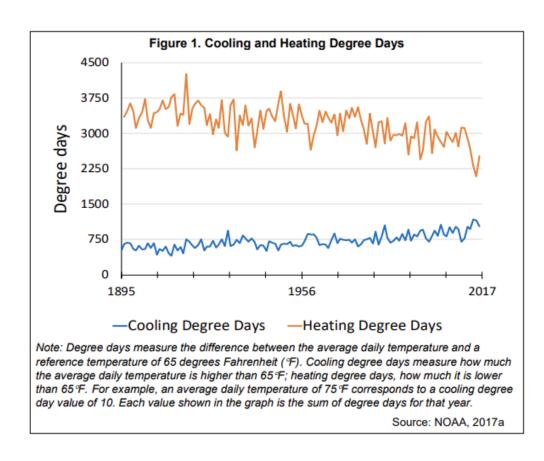
0.718

1.009

• Bias: 47% reduction in systematic bias. Median moved closer to 1: from $0.982 \rightarrow 1.009$

0.650

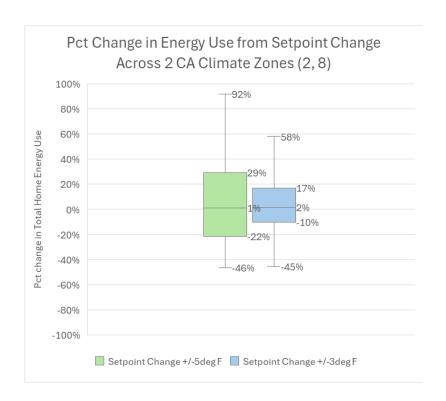
• Uncertainty: 1% reduction in uncertainty. Std Dev moved closer to 0: from $0.650 \rightarrow 0.643$


Key Takeaways

- **Hypothesis #1 Energy Usage Data**: With energy data, modeling predictions can become both more accurate (less biased) and more consistent (less uncertainty), creating a stronger foundation for statewide ratings.
- **Hypothesis #2 Homeowner Input**: Using homeowner inputs to replace key initial assumptions about the home can improve accuracy mainly making the models less biased.

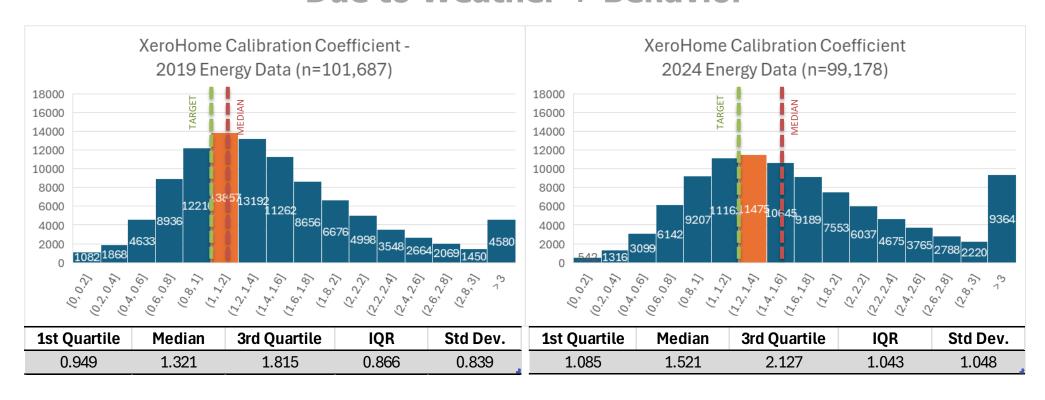
Discussion on Variance

• Weather Impacts: Energy use can vary year over year due to weather changes – Hotter years drive more cooling, less heating and vice versa



Discussion on Variance

• **Behavioral Impacts**: Energy use can vary with operational changes – Thermostat settings, time spent at home (e.g., working from home), window operation, and number of occupants, etc.



Setpoint changes:

Natural Energy Usage Variance Due to Weather + Behavior

Comparing the same home energy models against 2019 and 2024 energy data shows:

- ±7% variance in systematic bias due to factors like weather, occupant behavior etc. Median varies: 1.321 1.521
- ±11% variance in uncertainty due to factors like weather, occupant behavior etc. Std Dev varies: 0.839 1.048

These differences highlight the role of external factors – rather than model error – in year-to-year energy use variance.

XeroHome™

Conclusions

- **'BEM + Energy Usage Data'** offers a scalable, no-cost path to statewide home energy labeling that is credible, equitable and cost-effective.
- Publicly available data can form the foundation of an energy model, integrating actual energy-use data and homeowner-provided details enhances accuracy.
- Even a well-calibrated home energy model may not perfectly align with measured energy use, due to inherent variability in a home's consumption patterns.

Mudit Saxena

CEO & Founder, XeroHome™

MSaxena@xerohome.com https://about.xerohome.com

