

Building Technologies Office

The Three Sides of Digital Standards

Amir Roth

US DOE Building Technologies Office

CalBEM

Nov. 21, 2024

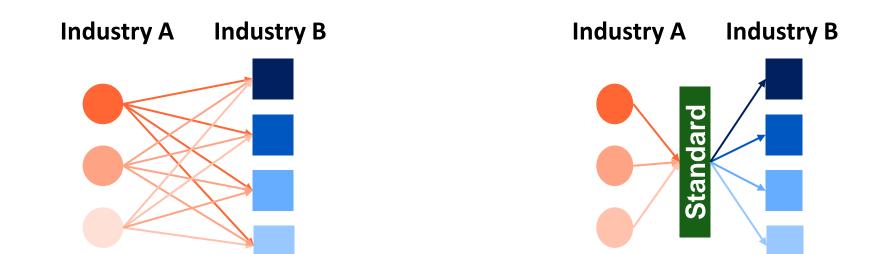
DIGITAL STANDARDS

Digital world is highly standardized

- Hardware interfaces and ABIs: x86_64, USB
- Programming languages: C++, Python, JavaScript
- Communication protocols: Ethernet, Wifi, Bluetooth, TCP/IP, SSH, SMS, HTTP, SMAP
- Data: JSON/CBOR, PDF, MP3, JPEG, MPEG

Standardization enabled the digital world to grow

• Stable connection points for new entrants and for adjacent industries


Has also created some challenges

• Privacy, IP, some business models have become less viable

BEM industry is not really standardized ... but probably should be

- Clear benefits
- Challenges can be overcome

DIGITAL STANDARDS HELP INDUSTRIES GROW

Digital standards \rightarrow interoperability \rightarrow scalability

- At "boundaries" between industries ... or different "layers" in the same industry
- Reduce the cost (and increases the value) of connecting across industries
- Eliminate need for explicit vendor-to-vendor relationships

SOME (COUNTER) EXAMPLES

BIM

BIM BEM

Code Review

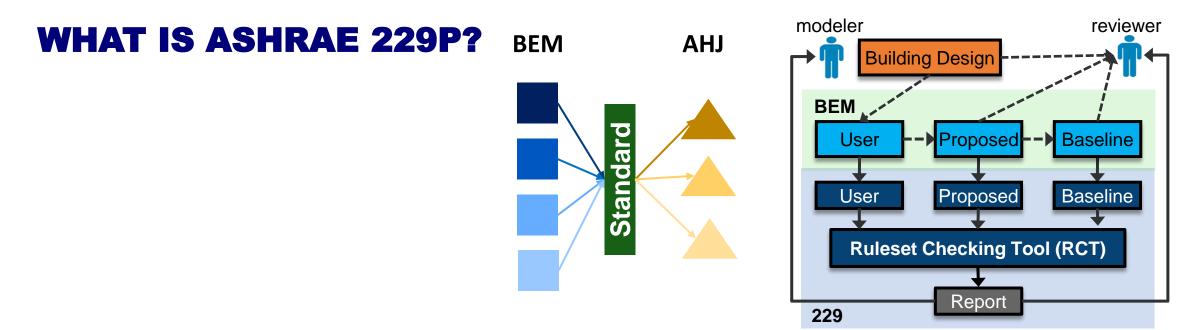
• Performance-path is not widely used, review rigor/bandwidth is one factor


BIM-to-BEM is still "unsolved" industry-wide in part due to a lack of

- BEM output standards would reduce cognitive burden on reviewers
- Standardization would simplify reporting and tracking by AHJs
- IBPSA-USA Building Data Exchange (BDE)

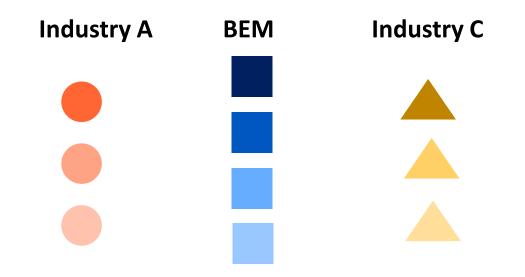
standardization at this interface

ASHRAE 229P



BDE (Building Data Exchange)

- Schema for common simulation outputs
- Complements vendor specific reports
- Applications to reporting programs (compliance, LEED, AIA 2030, 179D, etc.)



ASHRAE 229P "Evaluating Ruleset Application to Simulation Models"

- Intended to improve rigor, transparency, and consistency of model review
- ... and encourage adoption of performance-based codes and performance-path compliance
- BEM engines export model description (RES) at "ruleset" (e.g., 90.1 AppG) level of detail
- Checker (RCT) checks that proposed/baseline RES pairs have right relationship
- Complements BDE

WHAT OTHER INDUSTRIES SHOULD BEM CONNECT TO?

- HVAC OEMs ← ASHRAE 205
- Control engineers, Commissioning agents, Operators ← ASHRAE 223P, 231P
- Who else?

DIGITAL STANDARDS ENABLE COMPETITION

Industry A actors compete to produce data for industry B

Industry B actors may compete for users

• If all (or even most) necessary inputs are standardized

This is just competition, not a challenge to IP or business models

DIGITAL DATA CHALLENGES IP, PRIVACY, BUSINESS MODELS

Example: non-TMY weather files

• Once sold to someone, may be difficult to sell the same file to someone else**

Example: ASHRAE 205 detailed equipment performance data files

• Issue is not monetization, just straight IP

Example: ASHRAE 229P RES files

• Detailed enough to act as input for another BEM tool \rightarrow vendors may be reluctant to export

**"Making bits not copyable is like making water not wet" -anon

ENCRYPTION (ALONE) IS NOT A SOLUTION

```
x/1000b --- force 0x0000000112882000
0x112882000: Schedule:Constant,\n Actuated Sc
0x112882020: hedule Direct,
                                           !-
0x112882040: Name\n
0x112882060:
                            !- Schedule Type
0x112882080: Limits Name\n 18:
0x1128820a0:
                                    !- Hourly
0x1128820c0: Value\nSchedule:Constant,\n Actua
0x1128820e0: ted Schedule Indirect,
0x112882100:
                !- Name\n ,
0x112882120:
                                  !- Schedule
              Type Limits Name\n 18;
0x112882140:
0x112882160:
                                          !- H
0x112882180: ourly Value\nEnergyManagementSyst
0x1128821a0: em:GlobalVariable,\n argTrendVal
0x1128821c0: ue.
                                           !-
0x1128821e0: Erl Variable Name 1\n resultValu
0x112882200: e1:
                                            !-
              Erl Variable Name 2\nEnergyManag
0x112882220:
0x112882240: ementSystem:TrendVariable,\n Tre
0x112882260: nd_argTrendValue,
0x112882280:
                  !- Name\n argTrendValue,
0x1128822a0:
                                     !- EMS Va
0x1128822c0: riable Name\n 12:
                                   !- Number
0x1128822e0:
```

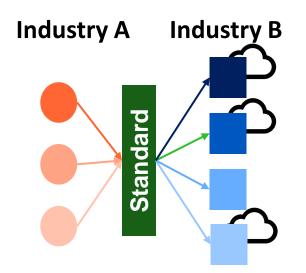
Tools have to decrypt files before using them

- Can get clear text even if tool itself is proprietary
- Open up tool in debugger and do a memory dump
- Example: EnergyPlus

"There is no such thing as a temporarily decrypted file or an embedded decrypted file. If a file is decrypted in the memory of a user's machine, she can always make a permanent copy of the cleartext."

CLOUD-BASED SERVICES

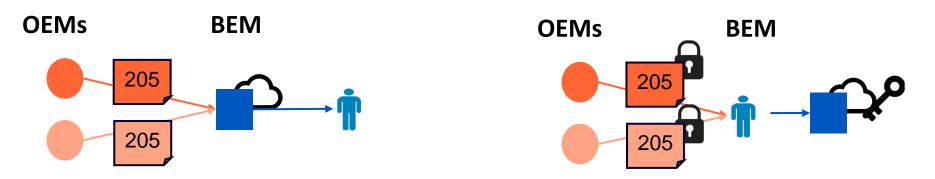
Many companies have moved software to the cloud (many others started there) ...


Many reasons for doing this ...

- Use subscription vs. one-time fee model
- Eliminate bootleg copies of your own software
- Gather more data about your users
- Spend less on user installation/configuration support
- Leverage elastic storage and compute capabilities

Ability to protect sensitive data for monetary, IP, or other reasons

WHOSE CLOUD?

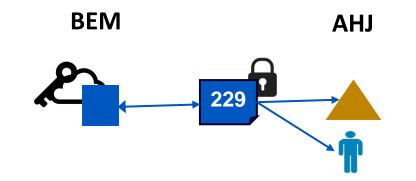


Conceptually easy if one vendor supplies the software and all (sensitive) inputs

What if sensitive inputs come from other vendors? From multiple vendors?

- E.g., you want to run BEM tool X with weather file from W and 205 files from Y and Z ...
- Whose cloud should the simulation run on? BEM vendor X, weather vendor W, OEMs Y or Z?
- Probably BEM vendor X ... or maybe a third-party provider that specializes in such things

HOW DOES EVERYONE ELSE GET THEIR MONEY?


How do W, Y, and Z monetize their data and/or ensure it isn't leaked or misused?

- Option 1: W, Y, Z have a legal agreement with X to host their data and provide it to X's users
- Option 2: W, Y, Z can sell encrypted files to users which only X can decrypt
 - W, Y, and Z can have direct relationships with customers **
 - Requires a legal agreement with X to not misuse the cleartext
- Other variants possible depending on the use case

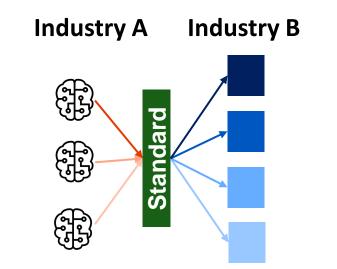
Can give user encrypted file for chain-of-custody ... just don't give decryption key

• This works because of asymmetric (i.e., public-key) cryptography

ANOTHER EXAMPLE

This one doesn't even require asymmetric cryptography

WHAT ABOUT AI? PART I Industry A Industry B Industry A Industry B


Generative AI lowers the cost of point-to-point translations ...

Does this make standards obsolete?

- Maybe, but AI translations will not be as reliable/deterministic as hand-coded ones (for a while)
- All also reduces the cost of translating to a standard (with same reliability issues)
 - A standard allows vendors to train/debug their translations independently

Ultimately, you want a "white-box" common representation

WHAT ABOUT AI? PART II

Al is not just a mediator/translator between adjacent industries Al is itself an adjacent industry to every other industry

- Where can AI help BEM?
- What do we want AI do know about BEM as a whole?
- Do we want a BEM "foundation model"? How do we make one?
- How can we standardize the BEM/AI data boundary to help AI help BEM?

TL;DR

BEM industry would benefit from additional digital standardization

• Especially at the interfaces with other industries

Digital exchange presents challenges to privacy, IP, business models

• But these can be handled by controlling where software executes (e.g., the cloud)

AI doesn't make need for standardization go away

- Want common language of BEM to be one that we created and that we understand
- Want to standardize BEM's interface to AI so that AI understands BEM better

Thank you!

amir.roth@ee.doe.gov

https://energy.gov/eere/buildings/

Building Technologies Office