

Evaluating the Potential Role for Machine Readable Rulesets in the Title 24 Code Cycle Update Process

Panelists:

Dove Feng, TRC Neal Kruis, Big Ladder Software Liam Buckley, IES-VE Greg Collins, Zero Envy

Moderator: RJ Wichert, California Energy Commission

Background: What is a Ruleset?

Rule: A requirement for model inputs or performance metric calculation of a protocol that uses modeling for assessing building performance.

Ruleset: A collection of rules for demonstrating adherence with a protocol that uses modeling for assessing building performance.

Background: Example Envelope Efficiency Rules

			Climate Zone																	
					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
elope		s/ gs	м	etal Building	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
		Roof Ceilin	Woo	od Framed and Other	0.034	0.034	0.034	0.034	0.034	0.049	0.049	0.049	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034
	2		м	etal Building	0.113	0.061	0.113	0.061	0.061	0.113	0.113	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.061
	l-facto		N	letal-framed	0.060	0.055	0.071	0.055	0.055	0.060	0.060	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055
		'alls		Mass Light ¹	0.196	0.170	0.278	0.227	0.440	0.440	0.440	0.440	0.440	0.170	0.170	0.170	0.170	0.170	0.170	0.170
	axim	3	Mass Heavy ¹		0.253	0.650	0.650	0.650	0.650	0.690	0.690	0.690	0.690	0.650	0.184	0.253	0.211	0.184	0.184	0.160
	Σ		Wood-framed and Other		0.095	0.059	0.110	0.059	0.102	0.110	0.110	0.102	0.059	0.059	0.045	0.059	0.059	0.059	0.042	0.059
		ors/ fits	Raised Mass		0.092	0.092	0.269	0.269	0.269	0.269	0.269	0.269	0.269	0.269	0.092	0.092	0.092	0.092	0.092	0.058
Ē		Floc		Other	0.048	0.039	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.039	0.071	0.071	0.039	0.039	0.039
	ing ucts	w- ped	Aged S	Solar Reflectance	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
		slo	Thermal Emittance		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	Roof Prod	- bed	Aged Solar Reflectance		0.20	0.25	0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
		Ste	Thermal Emittance		0.75	0.80	0.75	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Air Barrier			REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	
	Exterior Doors, Non-Swinging			0.50	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	0.50	
Maximum U-fa			tor Swinging		0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70

Background: Example Energy Recovery Rules

TABLE 140.4-K: ENERGY RECOVERY REQUIREMENTS BY CLIMATE ZONE AND PERCENT OUTDOOR AIR AT FULL DESIGN AIRFLOW (≥8,000 HOURS / YEAR)

% Outdoor Air at Full Design Airflow	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
≥10% and <20%	≥10,000	≥10,000	NR	NR	NR	NR	NR	NR	NR	≥40,000	≥40,000	≥20,000	≥10,000	≥10,000	≥10,000	≥10,000
≥20% and <30%	≥2,000	≥5,000	≥13,000	≥9,000	≥9,000	NR	NR	NR	NR	≥15,000	≥15,000	≥5,000	≥5,000	≥5,000	≥5,000	≥5,000
≥30% and <40%	≥2,000	≥3,000	≥10,000	≥6,500	≥6,500	NR	NR	NR	≥15,000	≥7,500	≥7,500	≥3,000	≥3,000	≥3,000	≥3,000	≥3,000
≥40% and <50%	≥2,000	≥2,000	≥8,000	≥6,000	≥6,000	NR	NR	NR	≥12,000	≥6,000	≥6,000	≥2,000	≥2,000	≥2,000	≥2,000	≥2,000
≥50% and <60%	≥2,000	≥2,000	≥7,000	≥6,000	≥6,000	NR	NR	≥20,000	≥10,000	≥5,000	≥5,000	≥2,000	≥2,000	≥2,000	≥2,000	≥2,000
≥60% and <70%	≥2,000	≥2,000	≥6,000	≥6,000	≥6,000	NR	NR	≥18,000	≥9,000	≥4,000	≥4,000	≥2,000	≥2,000	≥2,000	≥2,000	≥2,000
≥70% and <80%	≥2,000	≥2,000	≥6,000	≥5,000	≥5,000	NR	NR	≥15,000	≥8,000	≥3,000	≥3,000	≥2,000	≥2,000	≥2,000	≥2,000	≥2,000
≥80%	≥2,000	≥2,000	≥6,000	≥5,000	≥5,000	NR	NR	≥12,000	≥7,000	≥3,000	≥3,000	≥2,000	≥2,000	≥2,000	≥2,000	≥2,000

Background: CBECC Implementation

// Table 140.3-B Prescriptive Envelope Criteria For Nonresidential Buildings

// Table 140.3-C Prescriptive Envelope Criteria For High-Rise Residential Buildings And Guest Rooms Of Hotel/Motel Buildings

// Table 140.3-D Prescriptive Envelope Criteria For Relocatable Public School Buildings Where Manufacturer Certifies for Use In All Climate Zones

/ Baseline for new construction is always MetalFrameWall, but for alterations the baseline can be any type

TABLE ExteriorWallUFactor_T24N_2019

BldgType	TypeOfCons	UFactor															
ClimateZone=		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
NonResidential	MetalFrameWall	0.069	0.062	0.082	0.062	0.062	0.069	0.069	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
NonResidential	MetalBuildingWall	0.113	0.061	0.113	0.061	0.061	0.113	0.113	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.061
NonResidential	MassLightWall	0.196	0.170	0.278	0.227	0.440	0.440	0.440	0.440	0.440	0.170	0.170	0.170	0.170	0.170	0.170	0.170
NonResidential	MassHeavyWall	0.253	0.650	0.650	0.650	0.650	0.690	0.690	0.690	0.690	0.650	0.184	0.253	0.211	0.184	0.184	0.160
NonResidential	WoodFramingAndOtherWall	0.095	0.059	0.110	0.059	0.102	0.110	0.110	0.102	0.059	0.059	0.045	0.059	0.059	0.059	0.042	0.059
NonResidential	SpandrelWall	0.095	0.059	0.110	0.059	0.102	0.110	0.110	0.102	0.059	0.059	0.045	0.059	0.059	0.059	0.042	0.059
Residential	MetalFrameWall	0.069	0.069	0.069	0.069	0.069	0.069	0.105	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.048	0.069
Residential	MetalBuildingWall	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.057	0.057	0.057	0.057	0.057
Residential	MassLightWall	0.170	0.170	0.170	0.170	0.170	0.227	0.227	0.227	0.196	0.170	0.170	0.170	0.170	0.170	0.170	0.170
Residential	MassHeavyWall	0.170	0.170	0.170	0.170	0.170	0.227	0.227	0.227	0.196	0.170	0.170	0.170	0.170	0.170	0.170	0.170
Residential	WoodFramingAndOtherWall	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.042	0.059	0.059	0.042	0.042	0.042
Residential	SpandrelWall	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.042	0.059	0.059	0.042	0.042	0.042
RelocClass	MetalFrameWall	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057
RelocClass	MetalBuildingWall	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057
RelocClass	MassLightWall	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
RelocClass	MassHeavyWall	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
RelocClass	WoodFramingAndOtherWall	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042
RelocClass	SpandrelWall	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042

Background: California Current State-of-Play

Background: Vision

CASE Efforts Supporting Ruleset Development

CASE: Research and gathering of information to develop the **documents** required to conduct a formal rulemaking proceeding, including the **energy impacts and the algorithms to evaluate the impact** of the proposed measure

- Market Analysis
- Energy Savings Analysis
 - Methods
 - Modify existing ruleset
 - Alterative analysis tool
 - Lab testing/field demonstration
- Cost and Cost Effectiveness analysis

- Proposed Revisions to Code
 Language
 - -ACM : proposed model inputs/ algorithms/rules for modeling and code compliance
- Proposed changes to CBECC
 Software Specification

Evaluating the Potential Role for Machine Readable Rulesets in the Title 24 Code Cycle Update Process

Panel Q&A

Panelists:

Dove Feng, TRC Neal Kruis, Big Ladder Software Liam Buckley, IES-VE Greg Collins, Zero Envy

Moderator: RJ Wichert, California Energy Commission